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Biophysical interactions between proteins and peptides are key
determinants of molecular recognition specificity landscapes. How-
ever, an understanding of how molecular structure and residue-
level energetics at protein−peptide interfaces shape these land-
scapes remains elusive. We combine information from yeast-based
library screening, next-generation sequencing, and structure-based
modeling in a supervised machine learning approach to report the
comprehensive sequence−energetics−functionmapping of the spec-
ificity landscape of the hepatitis C virus (HCV) NS3/4A protease,
whose function—site-specific cleavages of the viral polyprotein—is
a key determinant of viral fitness. We screened a library of sub-
strates in which five residue positions were randomized and mea-
sured cleavability of ∼30,000 substrates (∼1% of the library) using
yeast display and fluorescence-activated cell sorting followed by
deep sequencing. Structure-based models of a subset of experimen-
tally derived sequences were used in a supervised learning proce-
dure to train a support vector machine to predict the cleavability of
3.2 million substrate variants by the HCV protease. The resulting
landscape allows identification of previously unidentified HCV pro-
tease substrates, and graph-theoretic analyses reveal extensive clus-
tering of cleavable and uncleavable motifs in sequence space.
Specificity landscapes of known drug-resistant variants are similarly
clustered. The described approach should enable the elucidation and
redesign of specificity landscapes of a wide variety of proteases,
including human-origin enzymes. Our results also suggest a possible
role for residue-level energetics in shaping plateau-like functional
landscapes predicted from viral quasispecies theory.

protease | sequence−function mapping | substrate specificity | machine
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Predicting the impact of genetic diversity on molecular rec-
ognition specificity of enzymes is of fundamental importance

in molecular biology and also has implications for the design of
novel enzymes with controllable molecular recognition properties.
The balance between mutational tolerance and functional plas-
ticity is encapsulated in the notion of mutational landscapes (1),
which are high-dimensional maps that relate the function of indi-
vidual biomolecular variants to their functional and/or evolutionary
fitness (2, 3). Recent empirically determined sequence−function
mappings of proteins (4–12) have enabled the partial construc-
tion of mutational landscapes. Typically, sequence−function
mapping of proteins and protein−protein interactions involves
partial enumeration of the possible sequence diversity (for ex-
ample, all single mutations and a subset of double mutations at a
large number of protein residue positions) and high-throughput
functional evaluation coupled with deep sequencing (13–17).
The astronomical size of sequence space, however, limits com-
prehensive elucidation of sequence−function landscapes with any
one experimental approach. Computational biophysical methods
may, in principle, assist in creation and analysis of functional
and fitness landscapes (18, 19). Indeed, mutational landscapes

of simple protein models, such as lattice models, have been
extensively investigated using biophysical evolutionary theory
and computational simulations (20–30), and connections with
population genetics theories have been discovered (20, 31, 32).
While pioneering and crucial insights have been obtained in
these studies, chemically realistic atomic resolution structure-
based elucidation of functional landscapes has remained
elusive.
The genomes of several RNA viruses, e.g., human immuno-

deficiency virus (HIV) and hepatitis C virus (HCV), encode
polyproteins, which are processed posttranslationally by viral
proteases during maturation (33). The activity of HCV NS3
protease is key for viral maturation, as it cleaves exclusively at
four specific sites in the viral polyprotein (Fig. 1A) to release
individual nonstructural proteins (34) and also mediates in-
activation of key human immunity proteins (35). The cleavage
specificity of the protease is thus a key determinant of viral fit-
ness, and its proper functioning includes negative specificity—
the lack of cleavage of noncanonical sites on the viral protein
and most host cell proteins—but how and whether these features
are encoded in the protease−substrate interactions at a molec-
ular level is currently unknown. Furthermore, while RNA viruses
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such as HCV are believed to be under strong purifying selection
against nonsynonymous mutations (36–38), due to the extremely
high error rates of the associated RNA polymerases (39–41),
these viruses can exist as a population of variants called quasis-
pecies (42, 43) even within a single host individual (44). Indeed,
spontaneous emergence of diverse mutations (including drug-
resistant mutations) was demonstrated in continuous evolution
studies of the protease (45) and in viral replicon assays coupled
to ultradeep sequencing (46). Can molecular interaction fidelity
be maintained in the face of a large mutational load, and what, if
any, are the limits imposed on the allowed genetic diversity by
the underlying molecular interactions? The degeneracy of the
genetic code, the thermodynamic and kinetic stabilities of RNA
and proteins, and the presence of molecular chaperones may all
contribute to the mutational robustness of the structures of in-
dividual viral biomolecules under a high mutational load (41).

However, the mechanism by which key viral protein-based in-
teractions—for example, protease−substrate interactions critical
for viral propagation—may encode “fuzziness” (47) is not well
understood.
Here, we use a combination of experimental (biochemical)

and computational techniques to elucidate the specificity land-
scape of the interaction between HCV NS3/4A protease enzyme
and its substrates. Using yeast surface display, next-generation
sequencing, and a machine learning approach which combines
features from experimental data and atomistic computational
simulations (utilizing the Rosetta and Amber force fields) that
we recently developed (48, 49), we construct the specificity
landscapes (with cleavability assignments made for 3.2 million
substrate pentapeptide sequences) of the HCV NS3/4A protease
and three of its known drug-resistant variants (50).

Fig. 1. Overview of workflow and results. (A) The HCV viral polyprotein depicting marked biological cleavage sites for the HCV NS3 protease. (B)
Overview of the experimental and computational workflow. The construct shown (LY104) is the vector used for testing in the yeast-based assay. The
substrate was cloned in the region between the FLAG and HA signaling tags. Extent of cleavage was measured as a ratio of FLAG/HA, with a ratio of
1 indicating that the substrate was uncleaved and a ratio of 0 indicating that the substrate was cleaved. (C ) Validation of FACS gates for cleaved (blue),
partially cleaved (black), and uncleaved (red) sequences using the yeast surface display assay. (D–G) Heatmaps showing per-position amino acid fre-
quencies for (D) sequences taken from in vivo samples of HCV patients (8,726 sequences) compared with (E ) sequences determined by our assay as cleaved
(7,472 sequences), (F ) sequences determined by our assay as partially cleaved (8,737 sequences), and (G) sequences determined by our assay as uncleaved
(14,702 sequences).

Pethe et al. PNAS | January 2, 2019 | vol. 116 | no. 1 | 169

BI
O
PH

YS
IC
S
A
N
D

CO
M
PU

TA
TI
O
N
A
L
BI
O
LO

G
Y

D
ow

nl
oa

de
d 

at
 P

al
es

tin
ia

n 
T

er
rit

or
y,

 o
cc

up
ie

d 
on

 D
ec

em
be

r 
1,

 2
02

1 



www.manaraa.com

Results
We mapped the protease−substrate interaction landscape for the
HCV NS3/4A protease by considering all possible pentapeptide
sequence combinations at positions P6 through P2 (Schechter and
Berger nomenclature) (51) in the substrate. Positions P1 and P1′,
between which the scissile bond is present, were maintained as
the canonical C and A, respectively. In the remainder of this pa-
per, we refer to individual pentapeptide patterns (e.g., the ca-
nonical cleavage sites DEMEE, EDVVC, ECTTP, and ALVTP)
and omit the identity of the P1, P1′ residues. By mapping the
substrate diversity for HCV NS3/4A wild-type protease as well as
three drug-resistant protease mutants, we explore the interaction
landscape for both protease and substrate diversity.

Exploration of the (P6-P2) Specificity Landscape of the HCV NS3/4A
Protease Reveals a Diverse Specificity Profile. To mimic the viral
intrachain arrangement of substrate libraries and the protease,
we utilized a modified version of the assay described by Iverson
and coworkers (52) (Fig. 1B and SI Appendix, Fig. S1A). A
mutagenic library was created incorporating degenerate codons
at P6 to P2 specificity defining substrate positions (53, 54). In this
assay, substrates are transported to the surface of yeast cells in a
cleavage-dependent manner: The degree of cleavage is estimated
by measuring the relative levels of substrate-flanking FLAG and
HA tags using fluorescent-labeled antibodies. We have pre-
viously used this assay to test known and novel substrates of the
HCV protease (48). A first round of yeast surface display assay
and Fluorescence Assisted Cell Sorting (FACS) was performed
with an inactive protease variant (S139A) to select for high ex-
pression of library variants, remove sequences containing stop
codons in the substrate region, and deplete substrate sequences that
are cleaved by yeast endoplasmic reticulum (ER) proteases (55).
The resulting substrate variants from the preselection were

subjected to rounds of yeast surface display assay and FACS with
an active-protease−containing construct to select cleaved, par-
tially cleaved, and uncleaved variants using three sorting gates
(Fig. 1B), based on the relative levels of anti-HA and anti-FLAG
fluorescence values. The FLAG/HA ratio ranges between 0 for
completely cleaved substrates and 1 for completely uncleaved
substrates. Sorting gates were defined based on the distribution
of populations observed for known cleaved and uncleaved se-
quences (48). This procedure was coupled with rounds of growth
and selection to improve the signal-to-noise ratio for variants in
each pool. Specificity profiles of the unselected population and
isolated functional variants were determined using next-generation
sequencing technology (Illumina NextSeq).
We identified a total of ∼379,000 unique sequences in the

background pool corresponding to ∼12% of the possible amino
acid diversity (3.2 million). Analysis of technical replicates as well
as the overlap between the sequence pools was used to determine
a count threshold (normalized count of 11) to remove noise from
the sequencing data (SI Appendix, Supplementary Methods and Fig.
S2). Based on these criteria, we identified 7,472, 8,737, and
14,702 unique pentapeptide sequences in the cleaved, partially
cleaved, and uncleaved pools, respectively. In parallel, we per-
formed Rosetta simulations on all 3.2 million sequences in the
P6 to P2 region to determine energetic features of the protease−
substrate models. We then used a support vector machine (SVM)
in a supervised machine learning approach to predict the complete
protease−substrate interaction landscape that incorporated se-
quence information procured from the aforementioned library
and Rosetta-generated energetic features (Fig. 1B).
Several novel substrates identified from the three variant

populations were tested as clonal populations in the yeast surface
display assay system (Fig. 1C and SI Appendix, Fig. S3) to vali-
date that individual sequences fall into the gates used for se-
lection from the library (SI Appendix, Fig. S4 A–C). Some

sequences were chosen because they were either different from
any of the canonical cleavage sites at three or more positions
(e.g., PSTVL) or implicated in epistatic networks (e.g., LSLIP;
see SI Appendix, Supplementary Discussion), or were identified
using a stricter enrichment threshold as described inMaterials and
Methods. A subset of these sequences was also tested in vitro to
ensure that the cleavage properties observed in the yeast system
were reproduced with purified protease and substrates (SI Ap-
pendix, Fig. S4D). The process of transforming quantitative
cleavage efficiencies to discrete functional pools of cleaved, par-
tially cleaved, and uncleaved substrates by definition involves a
loss of information regarding relative binding efficiencies of sub-
strates within each pool; however, clear differences in FLAG/HA
ratio between the three categorizations are apparent (Fig. 1C).
We next analyzed the cleaved, partially cleaved, and uncleaved

sequence sets obtained from deep sequencing. The cleaved spec-
ificity profile has greater diversity than the substrates identified
from viral genomes sequenced from patient populations (SI Ap-
pendix, Supplementary Methods and Fig. 1D). For example, we
observe that a more diverse subset of amino acids is tolerated at
substrate positions P6 and P5 in our cleaved and partially cleaved
pools (Fig. 1 E and F) whereas the patient-derived genomes dis-
play a high enrichment of Asp and Glu specifically at these po-
sitions. The relative abundance (compared with all 20 amino acids,
normalized to 1) of Asp at P6 is 0.08 in the cleaved population
compared with 0.03 in partially cleaved and 0.02 in uncleaved
populations; the relative abundance of Glu at position P5 in the
cleaved population is 0.06 compared with 0.03 and 0.01 in partially
cleaved and uncleaved populations. In contrast, these abundances
are P6-Asp-0.47, and P5-Glu-0.35 in the patient-derived genome
data. Overall, the viral genome-derived specificity profile has a
lower information content (i.e., lower diversity) than that of the
cleaved specificity profile obtained using our method (1.92 bits vs.
3.85 bits, out of a maximum 4.32 bits), pointing to the relative
flatness of the extended substrate specificity profile (SI Appendix,
Table S10) that can be recognized by the protease.
Strikingly, even though the actual sequences in each pool are

chosen to be distinct (SI Appendix, Fig. S9B), the overall speci-
ficity profiles of the three sequence sets (cleaved, partially
cleaved, and uncleaved) are similar (Fig. 1 E–G): The cosine
similarities (ranges between 0 and 1, dissimilar to similar) of
cleaved to uncleaved, cleaved to partially cleaved, and par-
tially cleaved to uncleaved are 0.61, 0.86, and 0.84, respectively.
Thus, cleaved sequences are more similar overall to partially
cleaved sequences than to uncleaved ones. Additionally, there
are several differences in the enrichment of certain residues at
each position in the three pools. For example, we found prolines
enriched at position P2 in the cleaved (relative abundance of 0.2)
and partially cleaved populations (relative abundance of 0.14)
compared with the uncleaved set (relative abundance 0.04),
which, in turn, prefers proline at P3 (0.23 relative abundance).
These trends correspond well with the fact that two out of four
canonical cleaved sequences have proline at P2 (ECTTP and
ALVTP). While some of the above trends are also reflected in
the sequences we tested during method validation (Fig. 1C), it is
evident that overall sequence composition or individual posi-
tional enrichments cannot be directly used to predict the pool
assignments of individual sequences. For example, His is some-
what enriched (relative abundance of 0.09 in cleaved population)
at P6 in the cleaved sequence pool, but the sequence HNTSN
is experimentally determined to be in the uncleaved pool (Fig.
1C and SI Appendix, Fig. S3). We conclude that interactions
between amino acids at various substrate positions (mediated
possibly through interaction networks in the protease) influ-
ence the cleavability, thereby motivating the need for an
analysis of the specificity landscape using properties of whole
pentapeptide sequences and models of their complexes with
the protease.
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Clustering Among Cleaved, Partially Cleaved, and Uncleaved Substrates.
To visualize the functionally labeled sequence space of the exper-
imentally derived substrates, we generated a force-directed graph
(Fig. 2A) (56, 57) in which each node represents a sequence and is
colored according to the functional pool to which it belongs. Nodes
are connected by an edge if they differ by one amino acid (Ham-
ming distance = 1). Cleaved substrates exhibit significant clustering
in the resulting graph (Fig. 2A). To examine the landscape in
greater detail around the cleaved sequences, we generated a sub-
graph of the cleaved sequences (Fig. 2B), identified four clusters in
this graph using the Gephi (56) modularity algorithm, and de-
termined corresponding profiles for each cluster. One identified
cluster is clearly related to a canonical substrate, DEMEE, the
starting point for our library generation protocol.
To determine whether the clustering behavior observed in the

cleaved sequence pool is also found in the partially cleaved and
uncleaved pools, we calculated the fraction of neighbors in the
same functional pool for all sequences (Fig. 2C). We find that,
similar to cleaved sequences, uncleaved sequences are most
frequently surrounded by uncleaved neighbors, indicating clus-
tering behavior for this functional pool as well. On average,
cleaved sequence neighbors are 66.4% cleaved, and uncleaved
sequence neighbors are 83.3% uncleaved. Partially cleaved se-
quences are the least clustered among the three pools, having, on
average, 53% neighbors belonging to the same pool. These dis-
tributions indicate that, in the specificity landscape, clusters of
partially cleaved sequences surround clusters of cleaved and
uncleaved ones.
To delineate how the three functional populations, which

appear to be individually clustered in sequence space, are con-
nected to each other, we used the PageRank metric (58). This
metric predicts the likelihood of reaching a node given a random
walk on the substrate specificity landscape starting from a chosen
sequence. The sequence that was used as the template for library

generation, DEMEE, was chosen as the starting point in this
analysis. Partially cleaved substrates have, on average, higher
pageranks (SI Appendix, Fig. S5A) than either cleaved or
uncleaved substrates, indicating that they are more connected to
other nodes in the graph. The mean pagerank of the partially
cleaved sequences is 0.71 × 10−4, while the mean pageranks of
the cleaved and uncleaved sequences are 0.26 × 10−4 and 0.35 ×
10−4, respectively. These connectivity patterns imply that, in the
experimentally determined landscape, where the sampling is
largely limited to the region around the canonical sequence
DEMEE, increased mutational distance from DEMEE is cor-
related with loss of function: Partially cleaved sequences have
intermediate distance, and uncleaved sequences are more sequence-
distant. The high connectivity of partially cleaved nodes to other
clusters, as determined by PageRank and neighbor analysis, sug-
gests that the local topology of the specificity landscape is smooth.
The loss of cleavability upon mutation is not abruptly precipitous
[as observed for other systems (7)] but occurs, on average, via
partially cleaved nodes. However, these average connectivity
properties do not indicate the likelihood of individual mutational
trajectories on the landscape, for which more quantitative analysis
with catalytic efficiencies of cleavage of individual variants will
be required.
The graph generated by the experimentally derived sequences is

incomplete (∼30,000 nodes out of the 3.2 million possible). To test
whether the observed clustering and PageRank distributions are
an artifact of the limited sampling of the experiment, we generated
10 random graphs (e.g., SI Appendix, Fig. S6A). The random
graphs were generated by choosing new ending node assignments
for each edge randomly while preserving the cleavability label of
all nodes. In these control random graphs, where functional as-
signments and mutational distance are decoupled by construction,
the pageranks trend is cleaved (mean: 0.17 × 10−4) < partially
cleaved (mean: 0.28 × 10−4) << uncleaved (mean: 0.47 × 10−4), as

Fig. 2. Sequences of a given cleavage status cluster together. (A) Force-directed graph of experimentally investigated substrates in amino acid sequence
space. Blue nodes are cleaved, red are uncleaved, and black is partially cleaved. Edges connect nodes that are within one hamming distance of each other.
Orphan nodes and dyads are not shown. (B) Force-directed graph of cleaved sequences. Colors denote clusters, which are shown as specificity profiles outlined
in the same color as the corresponding cluster. (C) Fraction of neighbors that are cleaved (blue bars), partially cleaved (black bars), and uncleaved (red bars)
for cleaved, partially cleaved, and uncleaved sequences. Frequencies are normalized so that the integral of each histogram is equal to 1.
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opposed to cleaved < uncleaved << partially cleaved in the ex-
perimentally derived graph, further highlighting the relationship
between mutational distance and function preservation.

Energetic Features Derived from Rosetta Modeling Enable
Reconstruction of the Complete Protease−Pentapeptide Substrate
Landscape. While the experimentally derived populations of the
cleaved, partially cleaved, and uncleaved sequences display strik-
ing clustering patterns in sequence space, they include a small
fraction of the entire sequence diversity in the P6 to P2 region
(3.2 million sequences). To predict cleavability of all possible
3.2 million sequences in the interaction landscape, we used an
SVM method that we developed previously (48). Briefly, each
sequence was threaded onto a bound complex based on a modeled
near-attack conformation, and the complex was then relaxed to
accommodate the substrate while maintaining favorable catalytic
geometry. Energy evaluation of each of the 3.2 million complexes
was performed using Rosetta and Amber simulation packages.
A binary classification (cleaved/uncleaved) SVM was trained on

two sets of sequences. The first set was a subset of experimentally
identified sequences that were identified using more stringent
criteria than the original set of experimentally categorized se-
quences (1,817 cleaved and 3,605 uncleaved sequences; see Ma-
terials and Methods for details). The second set included 196
cleaved sequences and 1,943 uncleaved sequences identified by
Shiryaev et al. (59), and both sets together yielded 7,338 unique
sequences. Training features consisted of structure-based features
(energies of interaction) and sequence-based features (see Mate-
rials and Methods and SI Appendix, Fig. S7A). We initially cross-
validated the SVM on the training set using an 80:20 split with
100 iterations, which yielded an average AUROC (area under
receiver operating characteristic) of 0.96 (SI Appendix, Fig. S7D)
indicating high recapitulation of training data (perfect perfor-
mance would lead to an AUROC of 1). We then used the SVM
to predict cleaved and uncleaved labels for the remaining
3,192,658 sequences. These predictions have a precision of 0.95 at
a recall level of 0.89 for an overall accuracy of 0.95 (SI Appendix,
Fig. S7C) for the experimentally derived assignments that were left
out of the training set (5,906 cleaved sequences and 11,087
uncleaved sequences). For testing of SVM predictions, we selected
six sequences that were not found within the experimentally de-
fined set and had predicted distances greater than 2 from the
SVM-calculated separation hyperplane. For all of the tested se-
quences, we find good agreement with the SVM-based predictions
(Fig. 3A): The experimentally observed FLAG/HA ratios are
∼0 and ∼1 for the predicted cleaved and uncleaved test sequences,

respectively. To validate that the successful predictions are not
localized to specific regions of sequence space, we visualized a
subgraph of predicted cleaved sequences, present at a distance
of >2 from the hyperplane constructed by the SVM learning
procedure (SI Appendix, Fig. S7B). The experimentally identified
cleaved sequences are distributed evenly across sequence clusters
in the predicted cleaved population graph, further indicating that
the machine learning procedure performs evenly across the se-
quence diversity of cleaved sequences.

Structural and Energetic Bases for Observed Specificity Patterns.
Having obtained and validated predictions of cleavability by
combining experimental and computational data using super-
vised learning, we turned to structural models of protease−sub-
strate complexes to obtain insight into the underlying structural
basis of observed specificity patterns. For example, a compara-
tive analysis of the partially cleaved substrate “TATTA” and
canonical substrate “EDVVC” reveals that the former, com-
posed of small residues, does not completely occupy the sub-
strate cavity volume, whereas EDVVC occupies the entire cavity
(Fig. 3 B and C). The lack of voids at the interface and several
hydrogen bonds formed by the canonical substrate lead to better
binding [binding interaction energy = −80.2 Rosetta energy units
(Reu), as opposed to −77.5 Reu for TATTA], resulting in better
cleavage for this substrate. Apart from sidechain-based in-
teraction patterns, models also capture backbone conformational
changes that affect the orientation of the substrate in the active
site. For example, in the model corresponding to the sequence
RPGPG (uncleaved), the proline present at P3 in RPGPG (Fig.
3D) bends the peptide chain away from the protease, resulting in
breaking of the crucial backbone hydrogen bond patterns that
are characteristic of protease−substrate interactions (60).

Connectivity Properties of the Experimentally Determined and
Computationally Reconstructed Landscapes. Having computed the
entire P6 to P2 specificity landscape, we next examined the con-
nectivity patterns between cleaved and uncleaved sequences in this
reconstructed landscape. As with the experimentally determined
landscape, the reconstructed landscape also shows evidence of
clustering between cleaved and uncleaved nodes (SI Appendix, Fig.
S5 H and I): Most neighbors of (un)cleaved nodes are (un)
cleaved. While the clustering properties are similar, the lack of a
partially cleaved category in the computationally derived dataset
and incompleteness of the experimental dataset also lead to some
differences in the measured connectivity properties of these
graphs (SI Appendix, Fig. S5 F and G).

Fig. 3. Structural modeling provides insights into basis for cleavage. (A) Validation assay performed for three predicted cleaved, one partially cleaved, and
three uncleaved sequences using a yeast surface display-based technique. (B and C) The volume occupied by (B) TATTA and (C) EDVVC. EDVVC occupies an
optimal volume, making good contacts with the protease residue sidechains. TATTA fits in the available space but does not make optimal contacts, thus
resulting in suboptimal interaction energetics making TATTA a suboptimal substrate. (D) Structure of two models, ECTIP (cleaved) and RPGPG (uncleaved).
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Both the reconstructed and experimentally derived landscapes
feature several “novel” cleaved sequence patterns (defined as
more than three substitutions away from a canonical recognition
motif). To determine the accessibility of novel sequences, we
investigated the network connectivity between identified (and
individually experimentally validated) novel cleaved and canon-
ical cleaved sequences. As an example, we generated a subgraph
of the sequence space connecting the canonical cleaved se-
quences (DEMEE, EDVVC, ECTTP, and ALVTP) with each
other as well as the novel cleaved sequences, e.g., PSTVF (Fig.
4A). Analysis of all internode shortest paths in the predicted
graph shows that there exist many paths between canonical and
novel sequences that do not include uncleaved nodes (viable
paths), while some paths involve traversal of at least one pre-
dicted uncleaved node (nonviable paths).
For every novel cleaved sequence, we identified all shortest

paths between that sequence and each canonical cleaved se-
quence, and then asked whether each of these paths was a viable
trajectory (i.e., did not include an uncleaved sequence). For
example, for PSTVF, we found that there were 120 possible
shortest paths to DEMEE, e.g., PSTVF → PSTVE → PSTEE →
PSMEE → PEMEE → DEMEE. None of the shortest paths
between PSTVF and DEMEE included uncleaved nodes; thus,
100% of the shortest paths were viable. In contrast, out of the
24 possible shortest paths between PSTVF and ECTTP, only 8 of
them did not include any uncleaved nodes; thus, the fraction of
viable shortest paths between PSTVF and ECTTP is 33%. The
relatively high fraction of nonviable paths (66%) between
PSTVF and ECTTP indicates a potentially higher barrier between

PSTVF and ECTTP compared with DEMEE. We similarly
calculated the fraction of nonviable shortest paths between
every canonical sequence and every novel predicted cleaved se-
quence. Canonical sequences have a lower fraction of nonviable
paths between themselves than between canonical sequences and
the novel sequences (Fig. 4B); the canonical to canonical non-
viable path fractions have a mean of 0.0 and range from 0 to 0.2,
while the canonical to novel nonviable path fractions have a
mean of 0.1 and range from 0 to 0.5. Finally, the canonical se-
quence ALVTP has a higher proportion of nonviable paths than
the other canonical sequences, and is surrounded to a greater
extent by uncleaved neighbors, suggesting that the degree of a
node (number of cleaved neighbors) is correlated with its
reachability from canonical sequence nodes. Interestingly, it has
been found that the ALVTP site is a suboptimal substrate of the
protease compared with other canonical sites and, at times, is not
processed in vivo (59). Thus, it is likely that the polyprotein
context also plays a role in the cleavage of different sites in vivo.
We next investigated whether the nonviable path fraction of

novel cleaved nodes to canonical nodes is correlated with the
number of cleaved neighbors of a node. We divided the novel
sequences into three groups based on their number of cleaved
neighbors: 0 to 31 cleaved neighbors, 32 to 63 cleaved neighbors,
and 64 to 95 cleaved neighbors. We find that those novel cleaved
sequences that have a higher degree have, on average, a higher
fraction of viable trajectories to canonical nodes (Fig. 4C). Thus,
as expected for a highly clustered graph, the higher single mu-
tational tolerance of a given novel sequence is correlated with its

Fig. 4. Mutational trajectories between novel sequences and canonical cleaved sequences contain nonviable paths. (A) Force-directed graph between the
five canonical sequences: DEMEE, ECTTP, EDVVC, ALVTP, and the novel cleaved sequence PSTVF (depicted by large blue nodes). The graph includes the
intermediate sequences between PSTVF and all canonical sequences, as well as all of the neighbors of these sequences. The cleaved sequences in the mu-
tational trajectories are denoted by blue nodes, and the uncleaved are denoted by red. Cleavage statuses are predicted by the SVM. (B) Nonviable path
fraction from canonical sequences to other canonical sequences and novel sequences. (C) Histogram depicting the nonviable path fraction frequencies be-
tween each novel sequence and its closest canonical sequence. Histogram is shown separately for binned degrees.
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ability to be reachable from/to canonical sequences that are at
least three amino acid substitutions away in sequence space.
We note that the nature of the qualitative bins within which

substrates are classified in our analyses precludes evaluating the
evolutionary likelihood of individual mutational trajectories. In
particular, paths that appear to be completely viable (i.e., contain
no uncleaved nodes) may contain nodes that are of lower catalytic
efficiencies and/or fitness than the starting point, and therefore
are less likely to be traversed. Therefore, our analysis considers all
paths between nodes and focuses on relative nonviable path
fraction, e.g., nonviable path fraction between canonical and other
canonical substrates vs. nonviable path fraction between canonical
and novel substrates. An uncleaved node in a path is guaranteed
to make it nonviable, but demonstrating that two nodes which
have 100% viable paths between themselves form a neutral net-
work would require more quantitative characterization of the
catalytic efficiencies and molecular fitness of all of the nodes.

Specificity Landscapes of Drug-Resistant Protease Variants. As the
NS3/4A protease plays a key role in the viral assembly and
maturation process, it is a target for therapeutics that aim at
neutralizing viral activity. However, due to prevalence of qua-
sispecies that are lurking at low levels in the population (61),

several viral variants get exposed to the drug. Some of these
develop resistance, and propagate to form drug-resistant mu-
tants (DRMs). To investigate how drug-resistant variants of
the protease affect the mutational robustness, we explored the
specificity landscape for three DRMs: A156T, D168A, and
R155K/A156T/D168A (Fig. 5). We find that the DRM proteases
have similar specificity profiles to those of each other and to that
of the wild-type protease, with cosine similarities of DRM
specificity profiles to wild-type specificity profiles that range
between 0.89 and 0.99 (Fig. 5 C–F). However, the sequences
cleaved by the variant and wild-type proteases are distinct, with
an 8 to 21% overlap in sequences between the each of the var-
ious DRMs and wild-type proteases (SI Appendix, Fig. S9 I and
J). Upon comparing the graphical properties of the specificity
landscapes of the various protease variants, we observe that
substrates that are experimentally detected in the cleaved pools
of a greater number of protease variants (more recognizable) are
more reachable (higher pageranks) and more connected (higher
degree) in each graph (Fig. 5 G and H). These data indicate that
more recognizable substrates appear to be more robust to
changes in the protease. Thus, functional clustering in sequence
space appears to be a robust feature of the molecular recognition
between the HCV NS3/4 protease variants and their substrates.

Fig. 5. DRMs have similar structures and similar specificity profiles. (A) Drug-resistant variant structures. Mutations are outlined in sticks, and WT residues are
outlined in lines. Active site residues are represented as green sticks. (B) Validation assay performed using yeast surface display for each of the mutants. (C–F)
Mutant cleaved sequence specificity profiles for the (C) triple mutant, (F) D168A, (E) A156T, and (D) wild type, showing that the mutants have very similar
specificity profiles with slight variation compared with the WT. (G and H) Substrate sequences that are recognized by a greater number of variants have
higher (G) degrees and (H) pageranks.
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Discussion
We combined information gleaned from library screening in
yeast, deep sequencing, and structure-based modeling, using a
machine learning framework to delineate the protease−substrate
interaction landscape of HCV NS3/4A protease. These results
provide atomic-resolution insight into the bases for both positive
and negative specificity. We used a yeast surface display-based
assay that relies on the cleavage of the substrate region in the ER
of yeast followed by cell sorting into gates and deep sequencing.
We note that our assay is qualitative, and does not permit as-
sociation of the detected signal from deep sequencing with
quantitative cleavability of substrates. Indeed, while we have
validated that assignments to the three different pools are ac-
curate with at least ∼20 individual sequences, the identified
cleaved and partially cleaved substrates may represent a range of
catalytic efficiencies within their pools. On the other hand, the
assay construct with the protease and substrate on the same
chain is a good representation of the situation in the virus, where
the substrates of the protease are part of the same polyprotein
(although both cis and trans cleavages occur), leading to high
effective concentrations of substrates ([S] >> KM) in vivo. Under
these saturating conditions in the virus and in our assay, we argue
that selectivity and catalytic efficiency are both determined to a
great extent by the goodness of fit of various substrates in the
protease active site (i.e., by the relative binding between the
different substrates). Similarly, our SVM-based machine learning
approach to combine experimental and computational data also
is not without errors, showing a false-positive rate of ∼5 to 10%
on the experimental data. While we have validated several pre-
dictions on individual sequences (Figs. 1, 3, and 5), it is possible
that some individual sequences may be mispredicted. However,
the overall trends regarding the connectivity patterns observed
for the entire landscape should be robust to the misprediction
noise. Further ongoing development of the computational and
experimental methods that we utilized is expected to help make
the approach outlined here more quantitatively accurate.
We note that our graph theoretic analyses (Fig. 4), which draw

from similar previous analyses (10, 62), report qualitatively on the
local topology of the recognition specificity landscape, which is re-
lated to, but distinct from, a molecular fitness landscape. This dif-
ference arises as functional bins, whose boundaries are derived from
experiments and within which substrates are classified (cleaved,
partially cleaved, uncleaved), serve as a qualitative proxy for the
catalytic efficiency and associated molecular fitness; binning nec-
essarily flattens functional differences within a pool, and there is
loss of information. Overall clustering and connectivity properties
thus qualitatively describe the specificity landscape. On the mo-
lecular fitness landscape, the likelihood/fitness of individual mu-
tational trajectories may depend quantitatively on the relative
catalytic efficiency of traversed nodes. Definitive demonstration of
specific network topologies (e.g., a neutral network) would require
a more quantitative approach for molecular fitness characterization.
Our results provide a biophysical baseline for understanding

how HCV protease substrates may sample genetic diversity while

maintaining function. For example, our analysis suggests that
viral evolution occurring at the substrate sites in the polyprotein
could also contribute to drug resistance. Due to the high in-
terconnectedness of partially cleaved and fully cleaved clusters,
novel sequences that are better substrates of drug-resistant vari-
ants may easily arise. This mode of substrate coevolution-based
drug resistance has been observed in HIV-1 (63). At the same
time, our analysis of the dominant HCV sequences obtained from
patients suggests that the protease−substrate interactions may also
contribute to negative selection (SI Appendix, Supplementary Dis-
cussion) and help limit the acquisition of heterogeneity. The mo-
lecular interaction between the protease and substrates, while key
for viral survival, does not directly determine evolutionary fitness
and is one of the many evolutionary forces at play, especially in the
“wild” (64). Other factors such as the impact of genetic diversity
on intrahost population size, stability, size and structure of the
viral RNA genome, and interactions between the host and viral
machineries and other environment-dependent factors are also
important to consider while considering the evolution of HCV
(46). Thus, apart from the connectivity properties of the specificity
landscape (Fig. 4), a confluence of various factors, including the
lack of sampling of genetic diversity by the virus in the wild and a
relatively small number of genomes sequenced, may contribute to
the lack of genetic diversity observed in patient-derived sequences
of HCV protease substrates.
In summary, our exploration of a viral molecular specificity

landscape uncovers novel specificities for the HCV NS3/4A
protease. The developed specificity landscape enumeration ap-
proach is general, and combining experimental deep sequencing
and structural modeling at a matching high throughput, followed
by supervised machine learning, may be useful for elucidating a
significantly larger space of sequence−function relationships for
a variety of other natural or designed protease enzyme systems.

Materials and Methods
See SI Appendix for detailed descriptions of experimental procedures
and computational methods and for additional data: detailed overview (SI
Appendix, Fig. S1), threshold determination (SI Appendix, Fig. S2), flow
cytometry (SI Appendix, Figs. S3 and S4), graph metrics (SI Appendix, Fig. S5),
experimentally derived graphs (SI Appendix, Fig. S6), SVM classification (SI
Appendix, Figs. S7, S16, and S17), negative selection (SI Appendix, Fig. S8),
population overlap (SI Appendix, Fig. S9), positive and negative epistasis (SI
Appendix, Fig. S10), specificity profile comparisons (SI Appendix, Fig. S11),
sorting replicates (SI Appendix, Fig. S12), sorting gates for all enriched
populations (SI Appendix, Fig. S13), molecular cloning experimental over-
view (SI Appendix, Fig. S14), and sequence subsampling with more stringent
criteria (SI Appendix, Fig. S15).

ACKNOWLEDGMENTS. We thank D. Zorine, L. Cuypers, H. Khiabanian,
D. Kumar, T. Choi, E. Sontag, and S. Annavarappu for technical assistance,
and J. Marcotrigiano, T. Whitehead, A. Keating, M. Harms, and D. Tawfik for
helpful suggestions. We also thank Y. Li, B. Iverson, and G. Georgiou for
sharing the LY104 plasmid used in the yeast ER sequestration screening assay
experiments. This work was supported by NSF Grant MCB1716623 (to S.D.K.)
and NSF Graduate Research Fellowship Grant DGE-1433187 (to A.B.R.). This
work used resources from the Rutgers Discovery Informatics Institute, which
is supported by Rutgers and the State of New Jersey.

1. Smith JM (1970) Natural selection and the concept of a protein space. Nature 225:
563–564.

2. Wright S (1931) Evolution in Mendelian populations. Genetics 16:97–159.
3. de Visser JA, Krug J (2014) Empirical fitness landscapes and the predictability of

evolution. Nat Rev Genet 15:480–490.
4. Fowler DM, et al. (2010) High-resolution mapping of protein sequence-function re-

lationships. Nat Methods 7:741–746.
5. Hietpas RT, Jensen JD, Bolon DN (2011) Experimental illumination of a fitness land-

scape. Proc Natl Acad Sci USA 108:7896–7901.
6. Kim I, Miller CR, Young DL, Fields S (2013) High-throughput analysis of in vivo protein

stability. Mol Cell Proteomics 12:3370–3378.
7. Sarkisyan KS, et al. (2016) Local fitness landscape of the green fluorescent protein.

Nature 533:397–401.
8. Wrenbeck EE, Azouz LR, Whitehead TA (2017) Single-mutation fitness landscapes for an

enzyme on multiple substrates reveal specificity is globally encoded. Nat Commun 8:15695.

9. Firnberg E, Labonte JW, Gray JJ, Ostermeier M (2014) A comprehensive, high-
resolution map of a gene’s fitness landscape. Mol Biol Evol 31:1581–1592.

10. Podgornaia AI, Laub MT (2015) Protein evolution. Pervasive degeneracy and epistasis
in a protein-protein interface. Science 347:673–677.

11. Bandaru P, et al. (2017) Deconstruction of the Ras switching cycle through saturation
mutagenesis. eLife 6:e27810.

12. McLaughlin RN, et al. (2012) The spatial architecture of protein function and adap-
tation. Nature 491:138–142.

13. Fowler DM, Fields S (2014) Deep mutational scanning: A new style of protein science.
Nat Methods 11:801–807.

14. Reich LL, Dutta S, Keating AE (2015) SORTCERY-A high-throughput method to affinity
rank peptide ligands. J Mol Biol 427:2135–2150.

15. Klesmith JR, Bacik JP, Wrenbeck EE, Michalczyk R, Whitehead TA (2017) Trade-offs
between enzyme fitness and solubility illuminated by deep mutational scanning. Proc
Natl Acad Sci USA 114:2265–2270.

Pethe et al. PNAS | January 2, 2019 | vol. 116 | no. 1 | 175

BI
O
PH

YS
IC
S
A
N
D

CO
M
PU

TA
TI
O
N
A
L
BI
O
LO

G
Y

D
ow

nl
oa

de
d 

at
 P

al
es

tin
ia

n 
T

er
rit

or
y,

 o
cc

up
ie

d 
on

 D
ec

em
be

r 
1,

 2
02

1 

https://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1805256116/-/DCSupplemental
https://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1805256116/-/DCSupplemental
https://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1805256116/-/DCSupplemental
https://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1805256116/-/DCSupplemental
https://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1805256116/-/DCSupplemental
https://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1805256116/-/DCSupplemental
https://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1805256116/-/DCSupplemental
https://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1805256116/-/DCSupplemental
https://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1805256116/-/DCSupplemental
https://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1805256116/-/DCSupplemental
https://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1805256116/-/DCSupplemental
https://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1805256116/-/DCSupplemental
https://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1805256116/-/DCSupplemental
https://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1805256116/-/DCSupplemental
https://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1805256116/-/DCSupplemental
https://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1805256116/-/DCSupplemental
https://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1805256116/-/DCSupplemental
https://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1805256116/-/DCSupplemental
https://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1805256116/-/DCSupplemental
https://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1805256116/-/DCSupplemental


www.manaraa.com

16. Jenson JM, Ryan JA, Grant RA, Letai A, Keating AE (2017) Epistatic mutations in PUMA
BH3 drive an alternate binding mode to potently and selectively inhibit anti-
apoptotic Bfl-1. eLife 6:e25541.

17. Louie RHY, Kaczorowski KJ, Barton JP, Chakraborty AK, McKay MR (2018) Fitness
landscape of the human immunodeficiency virus envelope protein that is targeted by
antibodies. Proc Natl Acad Sci USA 115:E564–E573.

18. Rodrigues JV, et al. (2016) Biophysical principles predict fitness landscapes of drug
resistance. Proc Natl Acad Sci USA 113:E1470–E1478.

19. Butler TC, Barton JP, Kardar M, Chakraborty AK (2016) Identification of drug re-
sistance mutations in HIV from constraints on natural evolution. Phys Rev E 93:
022412.

20. Echave J, Wilke CO (2017) Biophysical models of protein evolution: Understanding the
patterns of evolutionary sequence divergence. Annu Rev Biophys 46:85–103.

21. Sikosek T, Chan HS (2014) Biophysics of protein evolution and evolutionary protein
biophysics. J R Soc Interface 11:20140419.

22. Ding F, Dokholyan NV (2006) Emergence of protein fold families through rational
design. PLoS Comput Biol 2:e85.

23. DePristo MA, Weinreich DM, Hartl DL (2005) Missense meanderings in sequence
space: A biophysical view of protein evolution. Nat Rev Genet 6:678–687.

24. Yang JR, Liao BY, Zhuang SM, Zhang J (2012) Protein misinteraction avoidance causes
highly expressed proteins to evolve slowly. Proc Natl Acad Sci USA 109:E831–E840.

25. Drummond DA, Wilke CO (2008) Mistranslation-induced protein misfolding as a
dominant constraint on coding-sequence evolution. Cell 134:341–352.

26. Bornberg-Bauer E, Chan HS (1999) Modeling evolutionary landscapes: Mutational
stability, topology, and superfunnels in sequence space. Proc Natl Acad Sci USA 96:
10689–10694.

27. Bloom JD, Wilke CO, Arnold FH, Adami C (2004) Stability and the evolvability of
function in a model protein. Biophys J 86:2758–2764.

28. van Nimwegen E, Crutchfield JP, Huynen M (1999) Neutral evolution of mutational
robustness. Proc Natl Acad Sci USA 96:9716–9720.

29. Manhart M, Morozov AV (2015) Protein folding and binding can emerge as evolu-
tionary spandrels through structural coupling. Proc Natl Acad Sci USA 112:1797–1802.

30. Sailer ZR, Harms MJ (2017) High-order epistasis shapes evolutionary trajectories. PLoS
Comput Biol 13:e1005541.

31. Serohijos AW, Shakhnovich EI (2014) Merging molecular mechanism and evolution:
Theory and computation at the interface of biophysics and evolutionary population
genetics. Curr Opin Struct Biol 26:84–91.

32. Bershtein S, Serohijos AW, Shakhnovich EI (2017) Bridging the physical scales in
evolutionary biology: From protein sequence space to fitness of organisms and
populations. Curr Opin Struct Biol 42:31–40.

33. Yost S, Marcotrigiano J (2013) Viral precursor polyproteins: Keys of regulation from
replication to maturation. Curr Opin Virol 3:137–142.

34. Scheel TK, Rice CM (2013) Understanding the hepatitis C virus life cycle paves the way
for highly effective therapies. Nat Med 19:837–849.

35. Meylan E, et al. (2005) Cardif is an adaptor protein in the RIG-I antiviral pathway and
is targeted by hepatitis C virus. Nature 437:1167–1172.

36. Sanjuán R, Moya A, Elena SF (2004) The distribution of fitness effects caused by single-
nucleotide substitutions in an RNA virus. Proc Natl Acad Sci USA 101:8396–8401.

37. Acevedo A, Brodsky L, Andino R (2014) Mutational and fitness landscapes of an RNA
virus revealed through population sequencing. Nature 505:686–690.

38. Visher E, Whitefield SE, McCrone JT, Fitzsimmons W, Lauring AS (2016) The muta-
tional robustness of influenza a virus. PLoS Pathog 12:e1005856.

39. Domingo E, Holland JJ (1997) RNA virus mutations and fitness for survival. Annu Rev
Microbiol 51:151–178.

40. Holland J, et al. (1982) Rapid evolution of RNA genomes. Science 215:1577–1585.
41. Lauring AS, Frydman J, Andino R (2013) The role of mutational robustness in RNA

virus evolution. Nat Rev Microbiol 11:327–336.
42. Andino R, Domingo E (2015) Viral quasispecies. Virology 479-480:46–51.
43. Eigen M (1993) Viral quasispecies. Sci Am 269:42–49.
44. Cristina J, del Pilar Moreno M, Moratorio G (2007) Hepatitis C virus genetic variability

in patients undergoing antiviral therapy. Virus Res 127:185–194.
45. Dickinson BC, Packer MS, Badran AH, Liu DR (2014) A system for the continuous di-

rected evolution of proteases rapidly reveals drug-resistance mutations. Nat Commun
5:5352.

46. Geller R, et al. (2016) Highly heterogeneous mutation rates in the hepatitis C virus
genome. Nat Microbiol 1:16045.

47. Tokuriki N, Oldfield CJ, Uversky VN, Berezovsky IN, Tawfik DS (2009) Do viral proteins
possess unique biophysical features? Trends Biochem Sci 34:53–59.

48. Pethe MA, Rubenstein AB, Khare SD (2017) Large-scale structure-based prediction
and identification of novel protease substrates using computational protein design.
J Mol Biol 429:220–236.

49. Rubenstein AB, Pethe MA, Khare SD (2017) MFPred: Rapid and accurate prediction of
protein-peptide recognition multispecificity using self-consistent mean field theory.
PLoS Comput Biol 13:e1005614.

50. Romano KP, et al. (2012) The molecular basis of drug resistance against hepatitis C
virus NS3/4A protease inhibitors. PLoS Pathog 8:e1002832.

51. Schechter I, Berger A (1967) On the size of the active site in proteases. I. Papain.
Biochem Biophys Res Commun 27:157–162.

52. Yi L, et al. (2013) Engineering of TEV protease variants by yeast ER sequestration
screening (YESS) of combinatorial libraries. Proc Natl Acad Sci USA 110:7229–7234.

53. Benatuil L, Perez JM, Belk J, Hsieh CM (2010) An improved yeast transformation
method for the generation of very large human antibody libraries. Protein Eng Des
Sel 23:155–159.

54. Kowalsky CA, et al. (2015) High-resolution sequence-function mapping of full-length
proteins. PLoS One 10:e0118193.

55. Li Q, et al. (2017) Profiling protease specificity: Combining yeast ER sequestration
screening (YESS) with next generation sequencing. ACS Chem Biol 12:510–518.

56. Amat CB (2016) Gephi Cookbook,. Revista Española Documentación Científica 39:
e124.

57. Jacomy M, Venturini T, Heymann S, Bastian M (2014) ForceAtlas2, a continuous graph
layout algorithm for handy network visualization designed for the Gephi software.
PLoS One 9:e98679.

58. Brin S, Page L (1998) The anatomy of a large-scale hypertextual web search engine.
Comput Networks Isdn Syst 30:107–117.

59. Shiryaev SA, et al. (2012) New details of HCV NS3/4A proteinase functionality revealed
by a high-throughput cleavage assay. PLoS One 7:e35759.

60. Tyndall JD, Nall T, Fairlie DP (2005) Proteases universally recognize beta strands in
their active sites. Chem Rev 105:973–999.

61. Farci P, et al. (2000) The outcome of acute hepatitis C predicted by the evolution of
the viral quasispecies. Science 288:339–344.

62. Steinberg B, Ostermeier M (2016) Environmental changes bridge evolutionary valleys.
Sci Adv 2:e1500921.

63. Dam E, et al.; ANRS 109 Study Group (2009) Gag mutations strongly contribute to HIV-
1 resistance to protease inhibitors in highly drug-experienced patients besides com-
pensating for fitness loss. PLoS Pathog 5:e1000345.

64. Boucher JI, Bolon DN, Tawfik DS (2016) Quantifying and understanding the fitness
effects of protein mutations: Laboratory versus nature. Protein Sci 25:1219–1226.

176 | www.pnas.org/cgi/doi/10.1073/pnas.1805256116 Pethe et al.

D
ow

nl
oa

de
d 

at
 P

al
es

tin
ia

n 
T

er
rit

or
y,

 o
cc

up
ie

d 
on

 D
ec

em
be

r 
1,

 2
02

1 

https://www.pnas.org/cgi/doi/10.1073/pnas.1805256116

